ConJugoted azoalkenes, Part XI. Direct synthesis of substituted pyrazoles and 4-triphenylphosphoranylidene-4,5-dihydropyrazol-5-ones by heterocyclization of some zwitterionic 1,4-adducts between conlugated azoalkenes and triphenylphosphine

ORAZIO A. ATTANASI*. PAOLINO FILIPPONE and AHEDEO MEI

istituto di Chimica Organica della Facolta di Scienre, Universita di Urbino Piazza della Repubblica 13 - 61029 Urbino (Italy)

(Received *in UK* **13** *January* **1992)**

Abstract - The simple and direct synthesis in good yields of substituted pyrazoles and 4-triphenylphosphoranylidene-4,5-dihydropyrazol-5-ones i reported, These products have been prepared by heterocyclization under different reaction conditions of some 1,5-zwitterionic species obtained **from the 1,4-conjugate addition of triphenylphosphine to the azo-ene system of conjugated azoalkenes.**

INTRODUCTION

In previous investfgations we studied some Wittig-like reactions of conjugated azoal kenes with phosphorus yl ides. 1-3 In particular, the reaction between conjugated a zoalkenes and carboalkoxymethylene triphenylphosphoranes produces α , B-unsaturated **4-carboxyhydrazones or l-amino-3-triphenylphosphoranylidene-2,3-dihydropyrrol-2-ones, 1,2 while the reaction between the same reagents and a-oxotriphenylphosphoranes provides &&unsaturated 4-oxohydrazones and 3-unsubstituted l-aminopyrroles.3 In both cases the** reactions occur via a common 1,6-zwitterionic intermediate arising from the **1,4-conjugate addition of the phosphorus ylides to the azo-ene system to give interesting molecular functionalization by carboxy- 1,2,4 or carbonyl-olefination, 3'4 as well new and useful five-membered heterocyclic derivatives. 233**

Recently, we observed the ready 1,4-conjugate addition (Michael-like) of

1707

triphenylphosphine to the azo-ene system of conjugated azoalkenes to provide isolable adducts able to mainly afford substituted 1-carboxy-5-elkoxypyrazoles and unusual l-carboxy-4-triphenylphosphoranylidene-4,5-dihydropyrazol-5-ones in acetonitrile or methanol under reflux, respectively. However, these compounds exhibited an easy hydrolitic cleavage of the N-CO bond also in the same reaction medium with the result that some times from these reactions were directly obtained the corresponding pyrazol derivatives.

RESULTS AND DISCUSSION

Conjugated azoalkenes (la-h) promptly react with triphenylphosphine (2) at room temperature under magnetic stirring in ethyl acetate to give in good yield the stable 1,4-adducts (3a-h), as white precipitate. The 1,5-zwitterionic form produced initially by nucleophilic attack of triphenylphosphine to the azo-ene system of conjugated azoalkenes can tautomerize into corresponding hydrazonic form, as pictured in Scheme. Chemical and spectroscopical evidences support the existence of this tautomerism.

Reaction times, yields, and melting points of the 1,4-adducts 3a-h are listed in Table 1.

Heating of the 1,4-adducts (3a-h) in different solvents probably produces the common betaine intermediate (4) by internal nucleophilic attack of the nitrogen on the ester group. In acetonitrile under reflux, the betaine intermediate (4) cyclises to a four-centre oxaphosphetane intermediate (51, as reported in our previous paper3 and in accordance with a typical Wittig reaction mechanism. 5 Loss of triphenylphosphine oxide then leads to 1-alkoxycarbonyl- (6a-d) and 1-aminocarbonyl-5-alkoxypyrazoles (6e and 6f). In the case of 1,4-adducts 3e and 3f, 5-alkoxypyrazoles (7a and 7b) deriving from the hydrolitic N-CO bond cleavage were directly isolated instead of the expected pyrazole derivatives 6, while in the case of the other 1,4-adducts the 5-alkoxypyrazoles 7 were detected only in traces. Indeed, all the 1-carboxy-5-alkoxypyrazole derivatives 6 may be easily converted in almost quantitative yields by simple hydrolitic cleavage at room temperature into relevant 5-alkoxypyrazoles 7.

Reaction times, yields, and melting points of 1-alkoxycarbonyl-5-alkoxypyrazoles 6a-d, 1-aminocarbonyl-5-alkoxypyrazoles 6e and 6f, and 5-alkoxypyrazoles 7a and 7b are listed in Table 2.

When the reaction is carried out in methanol under reflux elimination of an alcohol

la-b

 \sim \sim

 $R_t = COOEt$, COOCMe₂, CONH₂, CONHPh $R_1 = Me$, Et

Scheme

fable 1 - **Reaction times, yields, and melting points of the 1,4-adducts** 3a-h.

'Yield of pure isolated product. b Melting points are uncorrected.

Table 2 - Reaction times, yields, and melting points of the 1-alkoxycarbony1-5-alko**xypyrazoles 6a-d, ?-aminocarbony~-5-alkoxypyra~oles 6e and** 6f, **and 5-alkoxypyrazoles** 7a **and 7b.**

^aYield of pure isolated product. ^bMelting points are uncorrected.

molecule from the betaine intermediate (41 becomes operative, in agreement with our previous findings.' This behaviour determines the formation from the 1,4-adducts 3a **and 3b, or 3c and 3d, of the same l-alkoxycarbonyl-4-triphenylphosphoranylidene-4,5-di-**

 $\mathbb{R}^{\mathbb{Z}}$

hydropyrazol-5-ones 8a or 8b, respectively. Analogously, starting from the 1,4-adducts 3e and 3f, or 3g and 3h, were prepared the same I-aminocarbonyl-4-triphenylphosphorany. lidene-4,5-dihydropyrazol-5-ones 8c or 8d, respectively. However, while 8c and 8d were produced in high yields (nearly 90%). 8a and 8b were revealed in lower yields (nearly 50%) due **to the presence in almost equimolecular ratio of the relative 1-alkoxycarbonyl-5-alkoxypyrazoles 6a-d, respectively. Also in this case, 4-triphenylphosphoranylidene-4,5-dihydropyrazol-5-one 9, coming from the hydrolysis of the N-CO bond, was detected in traces. Indeed, this compound may be readily synthesized in almost quantitative yields by simple hydrolitic treatment at room temperature of the l-carboxy-4-triphenylphosphoranylidene-4,5-dihydropyrazol-5-ones 8a-d.**

Reaction times, yields, and melting points of l-alkoxycarbonyl-4_triphenylphosphoranylidene-4,5-dihydropyrazol-5-ones 8a and 8b, l-aminocarbonyl-4-triphenylphosphoranylidene-4,5-dihydropyrazol-5-ones 8c and &I, and 4-triphenylphosphoranylidene-4,5-dihydropyrazol-5-one 9 are listed in Table 3.

Table 3 - Reaction times, yields, and melting points of the l-alkoxycarbonyl-4-triphenylphosphoranylidene-4,5-dihydropyratol-S-ones 8a and 8b, l-aminocarbonyl-4-triphenylphosphoranylidene-4,5-dihydropyrazol-5-ones 8c and 8d, and 4-triphenylphosphoranylide**ne-4,5-dihydropyrazol-5-one 9.**

^aYield of pure isolated product. ^b Melting points are uncorrected.

The products here reported are not easily synthesizable by other methods and should **merit of tests on some pharmaceutical activities. 6 The present investigation represents a further confirmation that conjugated azoalkenes are attractive products and versatile intermediates in organic chemistry, and especially in the synthesis of heterocycles. 7**

EXPERIMENTAL

Alkoxycarbonylazoaļkenes 1a-d (R₂=COOEt, COOMe₂), and aminocarbonylazoalkenes 1e-h $(R_{o}$ =CONH,, CONHPh) were synthesized as previously reported and in accordance with the respective references. Triphenylphosphine 2 was commercial material (Farmitalia-Carlo Erba) and was used without further purification. The characterization of triphenylphosphine oxide was made in comparison with authentical commercial specimen (Aldrich). Mps up to 200 °C were determined in capillary tubes with a Büchi (Tottoli) apparatus, from 200 to 300 °C with a Reichert (Kofler) apparatus, and above 300 °C with an Electrothermal Digital Melting Point apparatus. Mps are uncorrected. The products often decompose at melting point. often decompose at melting point. IR spectra were obtained in Nujol mull with a
Perkin-Elmer 298 spectrophotometer. ^IH NMR spectra at 60 MHz were recorded on a Varian H NMR spectra at 60 MHz were recorded on a Varian EM-360L spectrometer in CDCl₃, downfield from internal TMS. DMSO-d_e or CD₃OD. <u>آه</u> Chemical shifts (6) are reported in ppm The abbreviations used are as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad; D₂0 ex, D₂0 exchange. Merck precoated silica gel 60F_{os4} plates (0.25 mm) were employed for analytical z lytical thin-layer chromatography (TLC), Merck silica gel PF_{ora} plates (2.0 mm) for preparative TLC, and silica gel Kieselgel 60 (0.063-0.200 mm) %% column chromatography. All the compounds prepared showed a satisfactory elemental analysis (C+0.35, H+0.30, N+0.30).

General procedure for the synthesis of the 1,4-adducts 3a-h. To a stirred solution of conjugated azoalkene (1a-h) (1 mmol), dissolved in ethyl acetate (3 ml), was added dropwise a solution of triphenylphosphine (2) (1 mmol) dissolved in ethyl acetate (3 ml). and the mixture was stirred (0.1-0.3 h) at room temperature until the conjugated azoalkene completely disappeared (monitored by silica gel TLC), and a white precipitate formed. The product 3 filtered off showed satisfactory purity and was used without further purification.

3a: IR 3370, 3240, 3130, 1690, 1630 cm⁻¹; ¹H NMR (CDCl₂) 1.12 and 1.23 (3H, 2t, J=7.0 Hz), 1.78 and 2.10 (3H, 2s), 3.30 and 3.43 (3H, 2s), 4.25 and 4.58 (2H, 2q, J=7.0 Hz), 7.17-8.87 (16H, m) ppm.

3b: IR 3380, 3250, 3150, 1695, 1630 cm ⁻; ⁻H NMR (CDCl₃) 2.12 (3H, 2s), 3.67-4.78 (4H, m), 7.10-8.87 (16H, m) ppm. 0.80-1.48 (6H, m), 1.80 and

3c: IR 3350, 3230, 3130, 1685, 1640 cm $\,$; $\,$ H NMR (CDCl $_{_{\,\Omega}}$) i and 2.05 (3H, 2s), 3.30 and 3.45 (3H, 2s), 7.17-8.57 (16H, m 1.35 and 1.45 (9H, 2s), 1.83 m) ppm.

3d: IR 3350, 3235, 3130, 1685, 1640 cm⁻¹; ¹H NMR (CDCl₃) 0.97 (3H, t, J=7.0 Hz), 1.38 and 1.47 (9H, 2s), 1.83 and 2.10 (3H, 2s), 4.45 (2H, q, J=7.0 Hz), 7.10-8.63 (16H, m) PPm.

3e: IR 3480, 3305, 3190, 3115, 1740, 1685, 1610 cm⁻¹; ¹H NMR (CDCl₂) 1.75 and 2.15 (3H, 2s), 3.32 and 3.48 (3H, 2s), 4.60 and 5.38 (2H, 2 br s, $D_0O ex$), 7.20-8.37 (16H, m) ppm. 3f: IR 3480, 3300, 3200, 3120, 1735, 1680, 1610 cm⁻¹; ¹H NMR (CDCl₂) 0.82 (3H, t, J=7.0 Hz), 1.77 and 2.17 (3H, 2s), 4.33 (2H, q, J=7.0 Hz), 4.65 and 5.45 (2H, 2 br s, D_O ex), 7.03-8.35 (16X, m) ppm.

3g: IR 3340, 3180, 3105, 1740, 1680, 1650 cm⁻¹; ¹H NMR (CDCl₂) 1.82 and 2.22 (3H, 2s),

3h: IR 3345, 3200, 3110, 1735, 1680, 1645 cm^{-*}; ^{-*}H NMR (CDCl₂) 0.82 (3H, t, J=7.0 Hz), 1.82 and 2.22 (3H, 2s), 4.33 (2H, q, J=7.0 Hz), 6.63-8.45 (17Ĥ, m) ppm.

General procedure for the synthesis of the l-alkoxycarbonyl-5-alkoxypyrazolea 6a-d, 1-aminocarbony1-5-alkoxypyrazoles 6e and 6f, and 5-alkoxypyrazoles 7a and 7b. A solution of 1,4-adduct (3a-h) (1 mmol), dissolved in acetonitrile (5 ml), was heated under reflux (2-3 h) until the 1,4-adduct completely disappeared (monitored by silica gel TLC). The solvent was evaporated under reduced pressure and the crude products were isolated by chromatography on a silica gel column (elution with methylene chloride and methylene chloride-ethyl acetate mixtures). The products 6 and 7 were further purified by crystallization from ethyl ether-petroleum ether $(b.p. 40-60 °C)$.

6a: IR 1755, 1585 cm $^{-1}$; 1 H \mathbf{s} , \mathbf{a} ; "H NMR (CDCl₃) 1.38 (3H, t, J=7.0 Hz), 2.18 (3H, s), 3.85 (3H, 4.32 (2H, q, J=7.0 Hz), 5.25 (1H, s) ppm.

6b: IR 1745, 1595 cm⁻¹; ¹H 2.20 (3H, s), 4.63 ; H **NMR** (CDC13) 1.43 (3H, t, J=7.0 Hz), 1.47 (3H, t, J=7.0 Hz), (2H, q, J=7.0 Hz), 4.97 (2H, q, J=7.0 Hz) 5.38 (lH, 8) ppm.

6c: IR 1755, 1590 cm $\overline{}$; $\overline{}$ H NMR (CDCl₃) 1.57 (9H, s), 2.13 (3H, s), 3.75 (3H, s), 5.22 (IH, s) ppm.

6d: IR 1750, 1590 cm ; H NMR(CDCl₃) 1.38(3H, t, J=7.0 Hz), 1.58(9H, s), 2.12(3H, s), 4.48 (2H, q, J=7.0 Hz), 5.18 (1H, s) ppm.

6e: IR 3370, 1735, 1610, 1600, 5.38 (lH, s), 6.57-7.53 (5H, m) 1590 cm $\tilde{ }$; $\tilde{ }$ H NMR (CDCl_o) 2.50 (3H, s), 8.55 (1H, br s, D₂0 ex) ppm. 3.77 (3H, s),

6f: 1R 3370, 1735, 1615, 1600, (3H, s), 4.50 (2H, q, J=7.0 Hz), ex) ppm. 1585 cm \cdot ; \cdot H NMR (CDCl₂) 1.32 (3H, t, J=7.0 Hz), 2.50 , 5.40 (1H, s), 6.63-7.45 (5H, m), 8.67 (1H, br s, D₂0

7a: IR 3190, 3150, 3130, 1585 cm ⁻; ⁻H NMR (CDCl₃) 2.18 (3H, s), 3.83 (3H, s), 5.38 (1H, s), 10.07 (1H, br s, D_0Q ex) ppm.

7b: IR 3190, 3140, 3120, 1585 cm ⁻; ⁻H NMR (CDCl₃) 1.33 (3H, t, J=7.0 Hz), 2.20 (3H, **s**), 4.63 (2H, q, J=7.0 Hz), 5.42 (1H, s), 10.55 (1H, br s, D₂0 ex) ppm.

General procedure for the synthesis of the 1-alkoxycarbonyl-4-triphenylphosphoranylide $ne-4$, 5-dihydropyrazol-5-ones 8a and 8b, 1-aminocarbonyl-4-triphenylphosphoranylidene-4,5-dihydropyrazol-5-ones 8c and 8d, and 4-triphenylphosphoranylidene-4,5-dihydropyrazol-5-one 9. A solution of 1,4-adduct (3a-h) (1 mmol), dissolved in methanol (5 ml), was heated under reflux (10-12 h) until the 1,4-adduct completely disappeared (monitored by silica gel TLC). The solvent was evaporated under reduced pressure and the crude products were isolated by chromatography on a silica gel column (elution with methylene chloride and methylene chloride-ethyl acetate mixtures). The products 8 and 9 were further purified by crystallization with methanol.

8a: IR 1745, 1625, 1465, 1105 cm^{-1} ; ¹H NMR (CDC1₃) 1.67 (3H, s), 1.67 (3H, t, J=7.0 Hz),

4.50 (2H. q, J=7.0 Hz), 7.45-8.05 (15H, m) ppm.

8b: IR 1745, 1615, 1460, 1100 cm $^{-1}$; 1 H NMR (CDCl₃) 1.33 (3H, s), 1.58 (9H, s), 7.12-7.80 $(15H, m)$ ppm.

8c: IR 3515, 3310, 1715, 1620, 1460, 1105 cm⁻⁺; ⁺H NMR (DMSO-d_a) ex) ppm.) 1.37 (3H, s), 6.05 (1H, br s, D₂0 ex), 7.17-7.85 (15H, m), 8.38 (1H, br s, D₂0 ext), 7.17-7.85 (15H, m), 8.38

8d: IR 3410, 1715, 1630, 1460, 1105 cm $^{-1}$; 1 H NMR (DMSO-d $_{\circ}$) 1.33 (3H, s), 6.53-7.83 (21H, m) ppm.

 $9:$ IR 3210, 3130, 1600, 1460, 1105 $\mathrm{cm}^{-1};$ 1 H NMR (CD_OD) 1.38 (3H, s), 7.42-8.03 (16H, m) **pm.**

ACKNOWLEDGMENT

This work was supported by financial assistance from Consiglio Nazionals dell@ Ricerche fCNR - Roma), Ministera delf'Univeraita e della Ricerca Scfentifica e Tecnologica (NURST - Roma), and Regfone Marche (Ancona).

References and Notes

- **1. 0. Attanasi, P. Filippone and S. Santeusanio, Tetrahedron Lett., 5787 (1988).**
- **2. 0. Attanasi, P. Filippone, A. Mei, A. Bongini and E. Foresti, Tetrahedron, 46, 5685 (1990); and the references cited therein.**
- **3. 0. Attanasi, P. Filippone and A. Mei, J. Chem. Research (S), 252 (1991).**
- 4. For a review see: Y. S. Kulkarni, Aldrichimica Acta, 23, 39 (1990); and the **references cited therein.**
- **5. For a review see: B, E. Maryanoff and A. 8. Reitz, Chem. Rev., 89, 863 (1989); and the references cited therein.**
- **6. Tests on the anticancer and anti-AIDS activities of some of these compounds are performed under the auspices of the Developmental Therapeutics Program, Division of Cancer Treatment, National Cancer Institute, Bethesda, Maryland, USA.**
- **7. For review see: 0. Attanasi and L. Caglioti, Org. Prep. Proced. Int., 18, 299 (1986); and the references cited therein.**
- **8. 0. Attanasi, P. Filippone, A. Mei and S. Santeusanio, Synthesis, 873 (1984).**
- **9. 0. Attanasi, P. Filippone, A. Mei and S. Santeusanio, Synthesis, 671 (1984).**